Math, asked by jshaikhfarhan, 4 months ago

if the value of the determinant is m upon - 5 and 6 upon 4 is 58 then m=​

Answers

Answered by varadad25
10

Question:

If the value of the determinant \displaystyle{\left|\begin{array}{cc}\sf\:m & \sf\:6\\\sf\:-\:5 & \sf\:4\end{array}\right|} is 58, then find the value of m.

Answer:

The value of m is 7.

Step-by-step-explanation:

The given determinant is

\displaystyle{\left|\begin{array}{cc}\sf\:m & \sf\:6\\\sf\:-\:5 & \sf\:4\end{array}\right|\sf\:=\:58}

Now,

\displaystyle{\left|\begin{array}{cc}\sf\:m & \sf\:6\\\sf\:-\:5 & \sf\:4\end{array}\right|\sf\:=\:58}

\displaystyle{\implies\sf\:m\:\times\:4\:-\:\left[\:6\:\times\:(\:-\:5\:)\:\right]\:=\:58}

\displaystyle{\implies\sf\:4m\:-\:\left(\:-\:30\:\right)\:=\:58}

\displaystyle{\implies\sf\:4m\:+\:30\:=\:58}

\displaystyle{\implies\sf\:4m\:=\:58\:-\:30}

\displaystyle{\implies\sf\:4m\:=\:28}

\displaystyle{\implies\sf\:m\:=\:\cancel{\dfrac{28}{4}}}

\displaystyle{\implies\boxed{\red{\sf\:m\:=\:7}}}

The value of m is 7.

─────────────────────

Additional Information:

1. Determinant:

A structure of some numbers or elements between two straight lines is called as a determinant.

2. It is denoted using vertical pipe symbol ( | ).

3. If a, b, c and d are the elements of a determinant with its value x, it can be shown as:

\displaystyle{\left|\begin{array}{cc}\sf\:a & \sf\:b\\\sf\:c & \sf\:d\end{array}\right|\sf\:=\:x}

4. To solve this determinant, we have to subtract the product of b and c from the product of a and d.

\displaystyle{\sf\:(\:a\:\times\:d\:)\:-\:(\:b\:\times\:c\:)\:=\:x}

5. Linear equations in two variables can be solved using Cramer's rule which is based on determinants.

Answered by BrainlyAryabhatta
7

Answer:

Step-by-step explanation:

ANSWER∣∣∣∣∣∣​	  m−5​	  64​	  ∣∣∣∣∣∣​	  = 58=4m−(÷30)=58=4m=58−30=28∴m=7

Similar questions