If the zeroes of the polynomial x³-3x²+x+1 are (a-b),a and (a+b), then find the values of a and b.
Answers
Answer :-
The value of a is 1 and the value of b is √2 or - √2
Explanation :-
x³ - 3x² + x + 1
Zeroes of the polynomial are a, (a - b) and (a + b)
Comparing x³ - 3x² + x + 1 with ax³ + bx² + cx + d
We get
• a = 1
• b = - 3
• c = 1
• d = 1
We know that
Sum of the zeroes = - b/a
⇒ a + (a - b) + (a + b) = - (-3)/1
⇒ a + a - b + a + b = 3
⇒ 3a = 3
⇒ a = 3/3
⇒ a = 1
We know that
Product of zeroes = - d/a
⇒ a(a - b)(a + b) = - 1/1
⇒ a(a² - b²) = - 1 [Since (a + b)(a - b) = a² - b²]
⇒ 1(1² - b²) = - 1 [Since a = 1]
⇒ 1² - b² = - 1
⇒ 1 - b² = - 1
⇒ 1 + 1 = b²
⇒ 2 = b²
⇒ ± √2 = b
⇒ b = ± √2
Therefore the value of a is 1 and the value of b is √2 or - √2
a = 1
b = √2
x³ - 3x² + x + 1 = 0
Zeroes are :- (a - b) , a, (a + b)
____________________________
Values of a and b
___________________________
We know that
x³ - 3x² + x + 1 = 0
And,
a = 1
b = -3
c = 1
d = 1
_________________________
➭ Sum of zeroes = -b/a
________[Put Values]
(a + b) + a + (a - b) = -(-3)/1
⇒ 3a = 3
⇒ a = 3/3
⇒ a = 1
___________________________
➭ Product of zeroes = -d/a
_________[Put Values]
(a + b) * (a) * (a - b) = -1/1
⇒ (a² - b²) * a = -1
____________[Put value of a]
⇒ (1² - b²) * 1 = -1
⇒ 1 - b² = -1
⇒ -b² = -1-1
⇒ -b² = -2
⇒ b² = 2
⇒ b = √2
___________________________