If two parallel lines are intersected by a transversal, then prove that the bisectors of two
alternate interior angles are parallel.
Answers
Answered by
0
Answer:
Given: AB and CD are two parallel lines and transversal EF intersects then at G and H respectively. GM and HN are the bisectors of two corresponding angles ∠EGB and ∠GHD respectively.
To prove: GM∥HN
Proof:
∵AB∥CD
∴∠EGB=∠GHD (Corresponding angles)
⇒
2
1
∠EGB=
2
1
∠GHD
⇒∠1=∠2
(∠1 and ∠2 are the bisector of ∠EGB and ∠GHD respectively)
⇒GM∥HN
(∠1 & ∠2 are corresponding angles formed by transversal GH and GM and HN and are equal.)
Hence, proved.
solution
Step-by-step explanation:
hope it works
Similar questions