Math, asked by devarajn8663, 9 months ago

If two zeroes of polynomial P(x)=x^3+2x^2-9x-18 are 3 and -3 , find other zero of the polynomial​

Answers

Answered by jagadhathiguti
3

Answer:

the other zero of the polynomial is minus two.

please mark me as brainlist

Answered by TheBrainlyWizard
53

\bf{\underline{\underline{Given\: :}}}

\mathsf{\bigstar\: P(x) = x^{3} + 2x^{2} - 9x - 18}

\mathsf{\bigstar \: Zeroes\: are\: 3\:\:and\:\: (-3)}\\ \\

\bf{\underline{\underline{To\:find\: :}}}

\mathsf{\bigstar\: Other \:zero \:of \:P(x) }\\ \\

\bf{\underline{\underline{Solution\: :}}}\\

\mathsf{Let \: us\: represent\: the\:zeroes\: as \:\: "x"}\\

\mathtt{\rightarrow\: x = 3\: , \: (-3)}

\mathtt{\rightarrow\: (x - 3)(x + 3) = 0}

\mathtt{\rightarrow\: x^{2} + \cancel{3x} - \cancel{3x} - 9 = 0}

\mathtt{\rightarrow\: x^{2} - 9 = 0}\\ \\

\mathsf{On\:dividing\:p(x)\:by\:\:( x^{2} - 9)\: :}

\mathtt{We\:get\: \implies\: (x + 2) }

\fbox{\Large{\mathtt{\green{\implies\: x = (-2) }}}}

Check the attachment

Attachments:
Similar questions