Math, asked by elsavijay, 1 year ago

if two zeros of The polynomial x cube minus 3 X square + 2 are 1 + root 3 and 1 minus root 3 then find the third zero.

Answers

Answered by Anonymous
34
x³ - 3x² + 2 = 0

Sum of roots = 3 

Let the roots be α,β,p

Given α = 1+√3 and β = 1-√3

α+β+p = 3
2 + p  = 3
p = 1

So, the other root is 1
Answered by wifilethbridge
11

Answer:

1

Step-by-step explanation:

Dividend =x ^3 -3x^2+2

The roots of this polynomial are 1+\sqrt{3} and 1- \sqrt{3}

So, (x-(1+\sqrt{3})(x-(1-\sqrt{3})

(x-1-\sqrt{3})(x-1+\sqrt{3})

Property : (a-b)(a+b)=a^2-b^2

(x-1)^2-(\sqrt{3})^2

x^2+1-2x-3

x^2-2x-2

So, Divisor =  x^2-2x-2

Dividend = (Divisor \times Quotient)+Remainder

x ^3 -3x^2+2 = (x^2-2x-2 \times x-1)+0

So, the quotient = x-1

So, x-1=0

So, x =1

So, the third zero of the given polynomial is 1

Similar questions