Math, asked by vijaykalinder, 1 year ago

if u really give correct answer of a question above I will mark brainliest

Attachments:

Answers

Answered by rohit533
0
Plz mark me brainlist
sin theta-cos theta+1/sin theta+cos theta-1=1/sec theta- tan theta

by cross multiplication

sin theta- cos theta × sec theta- tan theta = 1× sin theta + cos theta

sin theta - cos theta × sec theta - tan theta=sin theta + cos theta

sec theta- tan theta =1
therefore
sin theta - cos theta/ sin theta + cos theta = 1/sec theta - tan theta

vijaykalinder: give answer
rohit533: mark me brainlist
rohit533: I give you ans
rohit533: mark me brainlist
rohit533: yes
Answered by siddhartharao77
0
Here I am writing theta as A.

= \ \textgreater \ Given : \frac{sinA-cosA+1}{sinA+cosA-1}

Multiply and divide by (1 - sinA)

= \ \textgreater \   \frac{sinA-cosA+1}{sinA+cosA-1} *  \frac{1-sinA}{1-sinA}

= \ \textgreater \   \frac{(sinA-cosA+1)(1 - sinA)}{(sinA+cosA-1)(1 - sinA)}

= \ \textgreater \   \frac{sinA-sin^2A-cosA+cosAsinA+1 - sinA}{(sinA+cosA-1)(1 - sinA)}

= \ \textgreater \   \frac{1 - sin^2A-cosA+sinAcosA}{(sinAcosA - 1)(1-sinA)}

= \ \textgreater \   \frac{cos^2A - cosA+sinAcosA}{(sinA+ cosA-1)(1 - sinA)}

= \ \textgreater \   \frac{cosA(cosA+sinA-1)}{(sinA +cosA-1)( 1- sinA) }

= \ \textgreater \   \frac{cosA}{1 - sinA}

= \ \textgreater \   \frac{1}{ \frac{1 - sinA}{cosA} }

= \ \textgreater \   \frac{1}{ \frac{1}{cosA} -  \frac{sinA}{cosA}  }

= \ \textgreater \   \frac{1}{secA-tanA}



Hope it helps!

siddhartharao77: Mark as brainliest
abhi569: o_O
Similar questions