Math, asked by ketyy23, 9 months ago

if u =sin^ -1 (2x/1+x^2) and v= tan ^-1 (2x/1-x^2) find du/dv

Answers

Answered by rajdheerajcreddy
2

ANSWER'S IN THE PIC...........

Attachments:
Answered by pulakmath007
22

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

 \displaystyle \sf{  \frac{du}{dv}  \:  \: when \:  \: u \:  =  { \sin}^{ - 1}  \frac{2x}{1 +  {x}^{2} } \:  \:  \: and \:  \:  \: v =  \:  \:  { \tan}^{ -1 }  \frac{2x}{1  -   {x}^{2} }}

CALCULATION

 \sf{ Let  \:   \: \: x = \tan \theta  \: }

Then

 \displaystyle \sf{   u \:  =  { \sin}^{ - 1}  \frac{2x}{1 +  {x}^{2} }   \:  \:  \: gives}

 \displaystyle \sf{   u \:  =  { \sin}^{ - 1}  \:  \:  \frac{2 \tan \theta}{1 +  { \tan \: }^{2}\theta }   \:  \:  \: }

 \implies \:  \displaystyle \sf{   u \:  =  { \sin}^{ - 1}  ( \sin 2 \theta) \:  \:  \: }

 \implies \:  \displaystyle \sf{   u \:  =   2 \theta \:  \:  \: }

Again

 \displaystyle \sf{   v \:  =  { \tan}^{ - 1}  \frac{2x}{1  -   {x}^{2} }   \:  \:  \: gives}

 \displaystyle \sf{   v \:  =  { \tan}^{ - 1}  \:  \:  \frac{2 \tan \theta}{1  -  { \tan \: }^{2}\theta }   \:  \:  \: }

 \implies \:  \displaystyle \sf{   v\:  =  { \tan}^{ - 1}  ( \tan 2 \theta) \:  \:  \: }

 \implies \:  \displaystyle \sf{   v \:  =   2 \theta  \:  \: }

 \sf{Therefore  \:  \:  \:  \:  \:  \: u = v}

Differentiating both sides with respect v we get

 \displaystyle \sf{  \frac{du}{dv} = 1}

RESULT

 \boxed{ \displaystyle \sf{  \:  \:  \frac{du}{dv} = 1 \:  \: }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Use Rolles Theorem to find a real number in the interval (0,3) Where the derivative of the function f(x)=x(x-3)^2 Vanish

https://brainly.in/question/22736169

Similar questions