Math, asked by praveenkapre7, 7 months ago

if x - 1/x = 2 then find the value of x ^4+1/x^4​

Answers

Answered by dayanidhan0207
0

Answer:

x-1 = 2x

x-2x = 1

x= -1

putting valueof x in equation x^4+1/x^4

-1^4+1/-1^4

1+1/1

=1

Ans= 1

Answered by Anonymous
32

Question :

If \bf{x - \dfrac{1}{x} = 2} , then find the value of

\bf{x^{4} + \dfrac{1}{x^{4}}}.

To Find :

The value of the \bf{x^{4} + \dfrac{1}{x^{4}}}.

Given :

  • \boxed{\bf{x - \dfrac{1}{x} = 2}}

We Know :

  • \bf{(a + b)^{2} = a^{2} + b^{2} + 2ab}

  • \bf{(a - b)^{2} = a^{2} + b^{2} - 2ab}

Concept :

By using the identities , we can find the value of \bf{x^{2} + \dfrac{1}{x^{2}}} , and by squaring it , we can find the required value.

Solution :

By Squaring the Equation , we get :

\\

Identity used :- \bf{(a - b)^{2} = a^{2} + b^{2} - 2ab}]

\\

\implies \bf{x - \dfrac{1}{x}} \\ \\ \\ \\ \implies \bf{\bigg(x - \dfrac{1}{x}\bigg)^{2} = x^{2} + \bigg(\dfrac{1}{x}\bigg)^{2} - 2 \times x \times \dfrac{1}{x}} \\ \\ \\ \\ \implies \bf{\bigg(x - \dfrac{1}{x}\bigg)^{2} = x^{2} + \dfrac{1}{x^{2}} - 2 \times \not{x} \times \dfrac{1}{\not{x}}} \\ \\ \\ \\ \implies \bf{\bigg(x - \dfrac{1}{x}\bigg)^{2} = x^{2} + \dfrac{1}{x^{2}} - 2} \\ \\ \\ \\  \implies \bf{x^{2} + \dfrac{1}{x^{2}} = \bigg(x - \dfrac{1}{x}\bigg)^{2}  + 2} \\ \\ \\

Putting the value of \bf{x - \dfrac{1}{x}} in the

\bigg(x - \dfrac{1}{x}\bigg)^{2} , we get :

\implies \bf{x^{2} + \dfrac{1}{x^{2}} = 2^{2}  + 2} \\ \\ \\ \\ \implies \bf{x^{2} + \dfrac{1}{x^{2}} = 4  + 2} \\ \\ \\ \\ \implies \bf{x^{2} + \dfrac{1}{x^{2}} = 6} \\ \\ \\ \\ \therefore \purple{\bf{x^{2} + \dfrac{1}{x^{2}} = 6}}

Hence the value of \bf{x^{2} + \dfrac{1}{x^{2}}} is 6.

Now , on Squaring the \bf{x^{2} + \dfrac{1}{x^{2}}} ,we get :

\implies \bf{x^{2} + \dfrac{1}{x^{2}}} \\ \\ \\ \\ \implies \bf{\bigg(x^{2} + \dfrac{1}{x^{2}}\bigg)^{2}} = (x^{2})^{2} + \bigg(\dfrac{1}{x^{2}}\bigg)^{2} + 2 \times x^{2} \times \dfrac{1}{x^{2}} \\ \\ \\ \\ \implies \bf{\bigg(x^{2} + \dfrac{1}{x^{2}}\bigg)^{2} = x^{4} + \dfrac{1}{x^{4}} + 2} \\ \\ \\ \implies \bf{x^{4} + \dfrac{1}{x^{4}} = \bigg(x^{2} + \dfrac{1}{x^{2}}\bigg)^{2} - 2} \\ \\ \\

Putting the value of \bf{x^{2} + \dfrac{1}{x^{2}}} in the Equation we get :

\implies \bf{x^{4} + \dfrac{1}{x^{4}} = 6^{2} - 2} \\ \\ \\ \\ \bf{x^{4} + \dfrac{1}{x^{4}} = 36 - 2} \\ \\ \\ \\ \bf{x^{4} + \dfrac{1}{x^{4}} = 34} \\ \\ \\ \therefore \purple{\bf{x^{4} + \dfrac{1}{x^{4}} = 34}}

Hence the value of \bf{x^{4} + \dfrac{1}{x^{4}}} is 34.

Similar questions