Math, asked by sahota88, 5 months ago

If x -1/x = 2, then find the value of x⁴+1/x⁴​

Answers

Answered by anindyaadhikari13
2

Answer:-

 \sf x -  \frac{1}{x}  = 2

Squaring both sides, we get,

 \sf  \implies{(x -  \frac{1}{x}) }^{2}  =  {2}^{2}

 \sf  \implies {x}^{2}  +  \frac{1}{ {x}^{2} } - 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x}}  = 4

 \sf  \implies {x}^{2}  +  \frac{1}{ {x}^{2} } - 2 = 4

 \sf  \implies {x}^{2}  +  \frac{1}{ {x}^{2} } = 4 + 2

 \sf  \implies {x}^{2}  +  \frac{1}{ {x}^{2} }  = 6

Squaring both sides, we get,

 \sf  \implies({ {x}^{2}  +  \frac{1}{ {x}^{2} }})^{2}   =36

 \sf  \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  =36

 \sf  \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 =36

 \sf  \implies {x}^{4}  +  \frac{1}{ {x}^{4} } = 34

Hence,

 \boxed {\sf  {x}^{4}  +  \frac{1}{ {x}^{4} } = 34}

Similar questions