Math, asked by gayatri29748, 1 year ago

If x-1/x=3, find the value of x^3-1/x^3​

Answers

Answered by ShuchiRecites
26

Answer: 36


Step-by-step explanation:


x - 1/x = 3


Since we know that,


( a - b )³ = a³ - b³ - 3ab( a - b )


Similarly,


(x - 1/x)³ = x³ - 1/x³ - 3(x)(1/x) x - 1/x)


By substituting values we get,


3³ = x³ - 1/x³ - 3(3)


27 = x³ - 1/x³ - 9


27 + 9 = x³ - 1/x³


36 = x³ - 1/x³


Anonymous: Nice Answer❤✌
ShuchiRecites: thank you
Answered by UltimateMasTerMind
35
<b>
Solution:-

Given :-

 \frac{x - 1}{x} = 3

We know that :-

(a - b) = a^3 - b^3 - 3ab ( a - b)

So,

Cubing on both sides. We get,

 = > { (x - \frac{ 1}{x} )}^{3} = {x}^{3} - { \frac{1}{x} }^{3} - 3x \: ( \frac{1}{x} ) \: (x - \frac{1}{x} ) \\ \\ = > {3}^{3} = {x}^{3} - \frac{1}{ {x}^{3} } - 3 \times 3 \\ \\ = > 27 = {x}^{3} - \frac{1}{ {x}^{3} } - 9 \\ \\ = > {x}^{3} - \frac{1}{ {x}^{3} } = 36.

Hence,

 {x}^{3} - \frac{1}{ {x}^{3} } = 36

Anonymous: Nice Answer❤
Kusumsahu7: maths aryabhaat
Kusumsahu7: haan dii apne sahi kaha
Anonymous: Wah mere Bandar ! keep Rocking ❤
Anonymous: (≧▽≦)
Similar questions