Math, asked by smithdestiny6669, 4 months ago

If x+1÷x=3, find the values of x³+1÷x³

Answers

Answered by Anonymous
1

Solution:-

Given:-

 \rm \to \: x +  \dfrac{1}{x}  = 3

To find the value of

 \rm \to \:  {x}^{3}  +  \dfrac{1}{ {x}^{3} }

Using This identity

 \rm \to \: (a + b) {}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)

Now applying This identities

 \rm \to \:  \bigg(x +  \dfrac{1}{x}  \bigg)^{3}  =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3 \times x \times  \dfrac{1}{x} \bigg(x +  \dfrac{1}{x}  \bigg)

Now put the value

 \rm \to \:  { 3}^{3}  =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3 \times  \cancel{x }\times  \dfrac{1}{ \cancel{x}}  \big(3)

 \rm \to \: 27 =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3 \times 3

  \rm \to \: 27 =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 9

\rm \to \: 27  - 9=  {x}^{3}  +  \dfrac{1}{ {x}^{3} }

\rm \to \: {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 18

Answer

\rm \to \: {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 18

Similar questions