Math, asked by anujplkt, 7 months ago

if ( x+1/x) = 4 and ( x^2 + 1/x^3 ) = 12, then what would be the value of ( x^3 + 1/x^2) = ?

Answers

Answered by Ikonikscenario7122
0

Answer: x³ + 1/x² = 54

Step-by-step explanation:

Given, x + 1/x = 4.........(1)   and     x² + 1/x³ = 12..........(2)

On squaring both sides in eq. (1)                     Put   x² = 14 - 1/x² in eq. (2)

(x + 1/x)² = 4²                                                       14 - 1/x² + 1/x³ = 12.....(4)

x² +  1/x² = 16 - 2                                                

x² = 14 - 1/x²                                                        

On cubing both sides in eq. (1)

(x + 1/x)³ = 4³

x³ + 1/x³ + 3x +3/x = 64

x³ + 1/x³ = 64 - 3(x + 1/x).......(3)

From eq. (1) and (3)                                           Put 1/x³ = 52 - x³ in eq. (4)

x³ + 1/x³ = 64 - 3×4                                              14 - 1/x² + 52 - x³ = 12

x³ + 1/x³ = 52                                                       x³ + 1/x² = 54

Step-by-step explanation:

Similar questions