Math, asked by Xeyahaider, 1 month ago

If x+(1/x)= √5, then the value of x³+(1/x)³.​

Answers

Answered by ajay8949
1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{x +  \frac{1}{x}  =  \sqrt{5} }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{cubing \: bot h\: sides}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{({x +  \frac{1}{x} }) {}^{3}  =(  \sqrt{5})  {}^{3} }

 \sf{ {x}^{3}  + ( \frac{1}{x} ) {}^{3}  + 3x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 5 \sqrt{5} }

 \:  \:  \sf {{x}^{3}  + ( \frac{1}{ x} ) {}^{3}  + 3(x +  \frac{1}{x} ) = 5 \sqrt{5} }

 \:  \:  \:  \:  \:  \sf{ {x}^{3}  + ( \frac{1}{x} ) {}^{3}  + 3 \sqrt{5}  = 5 \sqrt{5}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ {x}^{3}  + ( \frac{1}{x} ) {}^{3}  = 2 \sqrt{5}}

Similar questions