If (x + 1/ x) = 6 , find the value of (i) (x − 1/x) (ii) (x^2 − 1/x^2)
Answers
Answered by
5
Answer:
please mark it as the brainliest answer
Attachments:
Answered by
2
we have to solve this expression
Answer :
Step by step explanation:
x−x1)=6(x −x1)2=(6)2(x−x1)2=x2+x21−2(6)2=x2+x21−236+2=x2+x2138=x2+x21
x−x1)=6(x −x1)2=(6)2(x−x1)2=x2+x21−2(6)2=x2+x21−236+2=x2+x2138=x2+x2138 = x^2 +1/x^2
x−x1)=6(x −x1)2=(6)2(x−x1)2=x2+x21−2(6)2=x2+x21−236+2=x2+x2138=x2+x2138 = x^2 +1/x^2\begin{lgathered}(x + \frac{1}{x} ) {}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } + 2 \\ \\ (x + \frac{1}{x} ) {}^{2} = 38 + 2 \\ \\ (x + \frac{1}{x} ) {}^{2} = 40 \\ \\ (x + \frac{1}{x} ) = \sqrt{40} \\ \\ (x \ + \frac{1}{x} ) = \sqrt{2 \times 2 \times 2 \times 5 } \\ \\ (x + \frac{1}{x} ) = 2 \sqrt{10}\end{lgathered}(x+x1)2=x2+x21+2(x+x1)2=38+2(x+x1)2=40(x+x1)=40(x +x1)=2×2×2×5(x+x1)=210
Similar questions