if x +1/x=7, then find the value of x cube +1/x cube .
Answers
Answered by
244
Hey mate!!✌✌
![x + \frac{1}{x} = 7 x + \frac{1}{x} = 7](https://tex.z-dn.net/?f=x+%2B++%5Cfrac%7B1%7D%7Bx%7D++%3D+7)
![(x + \frac{1}{x} ) {}^{3} = x {}^{3} + \frac{1}{x {}^{3} } + 3(x + \frac{1}{x} ) \\ \\ (7) {}^{3} = x {}^{3} + \frac{1}{x {}^{3} } + 3 \times 7 \\ \\ x {}^{3} + \frac{1}{x {}^{3} } = 343 - 21 \\ \\ x {}^{3} + \frac{1}{x {}^{3} } = 322 (x + \frac{1}{x} ) {}^{3} = x {}^{3} + \frac{1}{x {}^{3} } + 3(x + \frac{1}{x} ) \\ \\ (7) {}^{3} = x {}^{3} + \frac{1}{x {}^{3} } + 3 \times 7 \\ \\ x {}^{3} + \frac{1}{x {}^{3} } = 343 - 21 \\ \\ x {}^{3} + \frac{1}{x {}^{3} } = 322](https://tex.z-dn.net/?f=%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D+%29+%7B%7D%5E%7B3%7D++%3D+x+%7B%7D%5E%7B3%7D++%2B++%5Cfrac%7B1%7D%7Bx+%7B%7D%5E%7B3%7D+%7D++%2B+3%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D+%29+%5C%5C++%5C%5C+%287%29+%7B%7D%5E%7B3%7D++%3D+x+%7B%7D%5E%7B3%7D++%2B++%5Cfrac%7B1%7D%7Bx+%7B%7D%5E%7B3%7D+%7D++%2B+3+%5Ctimes+7+%5C%5C++%5C%5C+x+%7B%7D%5E%7B3%7D++%2B++%5Cfrac%7B1%7D%7Bx+%7B%7D%5E%7B3%7D+%7D+++%3D+343+-+21+%5C%5C++%5C%5C+x+%7B%7D%5E%7B3%7D++%2B++%5Cfrac%7B1%7D%7Bx+%7B%7D%5E%7B3%7D+%7D+%3D+322)
Thanks for the question!
☺☺☺
Thanks for the question!
☺☺☺
priyanshi1876:
brainlist
Answered by
59
since
x+1/x=7,
then
(x+1/x)²=x²+1/x²+2,
(7)²=x²+1/x²+2,
49-2=x²+1/x²,
then
x²+1/x²=47,
hence
(x³+1/x³)=(x+1/x)(x²+1/x²-1),
(x³+1/x³)=(7)×(47-1),
(x³+1/x³)=7×46=322
x+1/x=7,
then
(x+1/x)²=x²+1/x²+2,
(7)²=x²+1/x²+2,
49-2=x²+1/x²,
then
x²+1/x²=47,
hence
(x³+1/x³)=(x+1/x)(x²+1/x²-1),
(x³+1/x³)=(7)×(47-1),
(x³+1/x³)=7×46=322
Similar questions