Math, asked by priyanshi1876, 1 year ago

if x +1/x=7, then find the value of x cube +1/x cube .

Answers

Answered by MsQueen
244
Hey mate!!✌✌


x +  \frac{1}{x}  = 7

(x +  \frac{1}{x} ) {}^{3}  = x {}^{3}  +  \frac{1}{x {}^{3} }  + 3(x +  \frac{1}{x} ) \\  \\ (7) {}^{3}  = x {}^{3}  +  \frac{1}{x {}^{3} }  + 3 \times 7 \\  \\ x {}^{3}  +  \frac{1}{x {}^{3} }   = 343 - 21 \\  \\ x {}^{3}  +  \frac{1}{x {}^{3} } = 322

Thanks for the question!

☺☺☺

priyanshi1876: brainlist
Answered by adee1729
59
since
x+1/x=7,

then

(x+1/x)²=x²+1/x²+2,

(7)²=x²+1/x²+2,

49-2=x²+1/x²,

then

x²+1/x²=47,


hence

(x³+1/x³)=(x+1/x)(x²+1/x²-1),

(x³+1/x³)=(7)×(47-1),

(x³+1/x³)=7×46=322
Similar questions