Math, asked by vma8605716, 1 year ago

If x+1/x = root 7 find the value the value of x^4+1/x^4

Answers

Answered by Anonymous
36
 \huge\underline{ \underline{ \mathfrak{answer}}}

According to the question...

given = x + \frac{1}{x} = \sqrt{7}

to \: find = {x}^{4} + \frac{1}{ {x}^{4} }

From given equation we will square both side.....

 {(x + \frac{1}{x} )}^{2} = { (\sqrt{7}) }^{2}

 {x}^{2} + { (\frac{1}{x}) }^{2} + 2 \times x \times \frac{1}{x} = 7

 {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 7

 {x}^{2} + \frac{1}{ {x}^{2} } = 7 - 2 = 5

 {x}^{2} + \frac{1}{ {x}^{2} } = 5.......(i)

Now squaring first equation we get,

 { (({x}^{2}) + (\frac{1}{ {x}^{2}})) }^{2} = ({5})^{2}

 {x}^{4} + \frac{1}{ {x}^{4} } + 2 \times {x}^{2} \times \frac{1}{ {x}^{2} } = 25

 {x}^{4} + \frac{1}{ {x}^{4} } + 2 = 25

 {x}^{4} + \frac{1}{ {x}^{4} } = 25 - 2

 {x}^{4} + \frac{1}{ {x}^{4} } = 23

..... Hence found....

Anonymous: thanks SAM☺☺❤✌
Anonymous: awesome
Anonymous: thanks
Answered by lakshmish1001
9
I hope this will help you
please mark this is brainliest
Attachments:
Similar questions