Math, asked by kaylaaaaxx, 3 months ago

If x^2 + 1/x^2 = 14, then find the value of x + 1 /x

Answers

Answered by bryanskiller555
1

Answer:

Tap on the image for the answer.

Attachments:
Answered by Aryan0123
7

Answer:

4

Step-by-step explanation:

\sf{x^{2} + \dfrac{1}{x^{2} } = 14}\\\\\\\Rightarrow \: \sf{\bigg(x + \dfrac{1}{x}\bigg)^{2} - 2 \big(x)\bigg(\dfrac{1}{x}\bigg) = 14}\\\\\\

\Rightarrow \sf{\bigg(x + \dfrac{1}{x}\bigg)^{2} - 2 = 14}\\\\

\Rightarrow \: \sf{\bigg(x + \dfrac{1}{x}\bigg)^{2}  = 14 + 2}\\\\

\Rightarrow \: \sf{\bigg(x + \dfrac{1}{x}\bigg)^{2}  = 16}\\\\

\sf{Taking \: square \: root \: on \: both \: sides,}\\\\

\sf{\sqrt{\bigg(x + \dfrac{1}{x}\bigg)^{2} } = \sqrt{16} }\\\\

\therefore \boxed{\bf{\bigg(x + \dfrac{1}{x}\bigg) = 4}}

Know more:

\boxed{\begin{minipage}{6 cm}\bf{\dag}\:\:\underline{\textsf{Fraction Rules :}}\\\\\bigstar\:\:\sf\dfrac{A}{C} + \dfrac{B}{C} = \dfrac{A+B}{C} \\\\\bigstar\:\:\sf{\dfrac{A}{C} - \dfrac{B}{C} = \dfrac{A-B}{C}}\\\\\bigstar\:\:\sf\dfrac{A}{B} \times \dfrac{C}{D} = \dfrac{AC}{BD}\\\\\bigstar\:\:\sf\dfrac{A}{B} + \dfrac{C}{D} = \dfrac{AD}{BD} + \dfrac{BC}{BD} = \dfrac{AD+BC}{BD} \\\\\bigstar\:\:\sf\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{AD}{BD} - \dfrac{BC}{BD} = \dfrac{AD-BC}{BD}\\\\\bigstar \:\:\sf \dfrac{A}{B} \div \dfrac{C}{D} = \dfrac{A}{B} \times \dfrac{D}{C} = \dfrac{AD}{BC}\end{minipage}}

Similar questions