Math, asked by rinakumari14075, 8 months ago

if x^2+1/x^2=23,find the value ofx+1/x​

Answers

Answered by aryangupta27941
2

Answer:

Hence the answer is

x +  \frac{1}{x}  = 5

Step-by-step explanation:

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23 \\ add \: 2 \: on \: both \: side \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times  {x}^{2}   \times  \frac{1}{ {x}^{2} }  = 23 + 2 \\ ( {x +  \frac{1}{x} })^{2}  = 25 \\ taking \: square \: root \: on \: both \: side \\ x +  \frac{1}{x}  =  \sqrt{25}  \\ x +  \frac{1}{x}  = 5

Answered by rohitkhajuria90
1

Answer:

x  + \frac{1}{x}  = 5

Step-by-step explanation:

We have

  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23 \\

We know

 {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab

So,

  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23  \\  {(x +   \frac{1}{x})  }^{2}  - 2 \times x \times  \frac{1}{x}  = 23 \\  {(x +   \frac{1}{x})  }^{2}  = 23 + 2 \\ x +  \frac{1}{x}  =  \sqrt{25}  = 5

Similar questions