If x^2+1/x^2=7, find the value of x√3+1/x^3
Answers
Answer:
±18
Step-by-step explanation:
Given that,
To find the value of :-
We know that,
Now, we know that,
Substituting the values, we get,
Hence, the required value is ±18.
CoRRᴇcᴛ Qᴜᴇsᴛɪᴏɴ :-
if (x² + 1/x²) = 7, find the value of (x³ + 1/x³) = ?
Sᴏʟᴜᴛɪᴏɴ :-
→ (x² + 1/x²) = 7
Adding 2 Both sides we get,
→ (x² + 1/x²) + 2 = 7 + 2
→ x² + 1/x² + 2 * x * 1/x = 9
Comparing the LHS part with a² + b² + 2ab = (a + b)² , we get,
→ (x + 1/x)² = 9
Square - Root Both sides now,
→ (x + 1/x) = ±3
________________
Now, if (x + 1/x) = +3
→ (x + 1/x) = 3
cubing Both sides,
→ (x + 1/x)³ = 3³
using (a + b)³ = a³ + b³ + 3ab(a + b) in LHS now,
→ x³ + 1/x³ + 3 * x * 1/x * (x + 1/x) = 27
→ x³ + 1/x³ + 3 * (x + 1/x) = 27
Putting value of (x + 1/x) Now,
→ (x³ + 1/x³) + 3 * 3 = 27
→ (x³ + 1/x³) + 9 = 27
→ (x³ + 1/x³) = 27 - 9
→ (x³ + 1/x³) = 18 (Ans.)
___________________
Now, if (x + 1/x) = (-3)
→ (x + 1/x) = (-3)
cubing Both sides,
→ (x + 1/x)³ = (-3)³
using (a + b)³ = a³ + b³ + 3ab(a + b) in LHS now,
→ x³ + 1/x³ + 3 * x * 1/x * (x + 1/x) = (-27)
→ x³ + 1/x³ + 3 * (x + 1/x) = (-27)
Putting value of (x + 1/x) Now,
→ (x³ + 1/x³) + 3 * (-3) = (-27)
→ (x³ + 1/x³) - 9 = (-27)
→ (x³ + 1/x³) = (-27) + 9
→ (x³ + 1/x³) = (-18) (Ans.)