Math, asked by anushikaprakash18, 6 months ago

if x=2+³√, find the value of x³+1/x³​

Answers

Answered by shinchan4448
2

Answer:

78

Step-by-step explanation:

Hi there !

_______________________

Given :

x = 2 + \sqrt{3}x=2+

3

To find ;

x {}^{3} + \frac{1}{x {}^{3} }x

3

+

x

3

1

Solution :

\begin{gathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{(2) {}^{2} - (\sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 - \sqrt{3}\end{gathered}

x=2+

3

x

1

=

2+

3

1

×

2−

3

2−

3

x

1

=

(2)

2

−(

3

)

2

2−

3

x

1

=

4−3

2−

3

x

1

=2−

3

Now,

\begin{gathered}x + \frac{1}{x} \\ \\ \implies2 + \cancel{\sqrt{3}}+ 2 - \cancel {\sqrt{3}} \\ \\ \implies2 + 2 \\ \\ \implies4\end{gathered}

x+

x

1

⟹2+

3

+2−

3

⟹2+2

⟹4

So, on cubing both sides, we have

\begin{gathered}(x + \frac{1}{x} ) {}^{3} = (4){}^{3} \\ \\ x{}^{3} + \frac{1}{x{}^{3}} + 3(x + \frac{1}{x} ) = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} +3 \times 4 = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} +12 = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} = 64 - 12 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} = 64 - 12 \\ \\ \boxed{ \bold{ x{}^{3} + \frac{1}{x{}^{3}} = 52}}\end{gathered}

(x+

x

1

)

3

=(4)

3

x

3

+

x

3

1

+3(x+

x

1

)=64

x

3

+

x

3

1

+3×4=64

x

3

+

x

3

1

+12=64

x

3

+

x

3

1

=64−12

x

3

+

x

3

1

=64−12

x

3

+

x

3

1

=52

_______________________

Thanks for the question !

☺️❤️☺️

Similar questions