Math, asked by ankitkum97partxf, 1 year ago

if x=2-√3 find the value of x3+1/x3

Answers

Answered by Nishita0603
1
hope this helps you
mark it as brainliest
Attachments:
Answered by TRISHNADEVI
5
✍✍HERE IS YOUR ANSWER..⬇⬇
====================================

\underline{SOLUTION}


given  \:  :   \:  \: x = 2 -  \sqrt{3}  \\  \\ to \:  \: find  \:  :  \: x {}^{3}  +  \frac{1}{x {}^{3} }  =





x = 2 -  \sqrt{ 3}  \\  \\  =  >  \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3} }  \\  \\  =  >  \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{(2 -  \sqrt{3})(2 +  \sqrt{3} ) }  \\  \\  =  >  \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{(2) {}^{2}  - ( \sqrt{3}) {}^{2}  }  \\  \\ =  >  \frac{1}{x}  =   \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\  =  >  \frac{1}{x}  =  2 +  \sqrt{3}

x +  \frac{1}{x}  = (2 -  \sqrt{3} ) + (2 +  \sqrt{3} ) \\  \\  =  > x +  \frac{1}{x}  = 4 \\  \\ cubing \:  \: both \:  \: sides \:  \: we \:  \: get \\  \\ (x +  \frac{1}{x } ) {}^{3}  = (4) {}^{3}  \\  \\  =  > (x) {}^{3}  + ( \frac{1}{x} ) {}^{3}  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x})  = 64 \\  \\  =  > x {}^{3}  +  \frac{1}{x  {}^{3} }  + 3 \times 4 = 64 \\  \\  =  > x {}^{3}  +  \frac{1}{x {}^{3} }  + 12 = 64 \\  \\  =  > x {}^{3}  +  \frac{1}{x {}^{3} }  = 64 - 12 \\  \\  =  > x {}^{3}  +  \frac{1}{x {}^{3} }  = 52


\underline{ANSWER}

x {}^{ 3}  +  \frac{1}{x {}^{3} }  = 52

___________________________________

✝✝…HOPE…IT…HELPS…YOU…✝✝
Similar questions