Math, asked by ankitkum97partxf, 1 year ago

if x=2-√3 find the value of x3+1/x3

Answers

Answered by Anonymous
14
HéLLø BUDDY❤❤

✌✌✌✌✌✌✌✌✌✌

Here Is Your Answer ✌✌

✌✌✌✌✌✌✌✌✌✌✌

Hope It's HELP..



So, Thé Answer Is --) x = 2 + ∫3  , 1/x = 2-∫3  

So, x + 1/x = 4

(x+1/x)3  =  43 

x3 + 1/x3 + 3x + 1/x = 64

x3 + 1/x3 + 3 = 64 

x3 + 1/x3 =  64 – 3 = 61.

#Finished✌✌

#THANK#YOU

If You Like This Answer..

So, MARK ME AS brilliant....
#nd Follow me..
Answered by BrainlyQueen01
19
Hey mate !

_______________________

Given :

x = 2 -  \sqrt{3}

To find :

x {}^{3}  +  \frac{1}{x{}^{3}}

Solution :

x = 2 -  \sqrt{3}  \\  \\  \frac{1}{x} =  \frac{1}{2 -  \sqrt{3} }   \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} } \\  \\  \frac{1}{x}   =  \frac{2 +  \sqrt{3} }{(2) {}^{2}  - ( \sqrt{3}) {}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 +  \sqrt{3}

Now,

x +  \frac{1}{x}  = 2 -  \cancel {\sqrt{3}} +  2 +  \cancel {\sqrt{3}} \\  \\ x +  \frac{1}{x}  = 2 + 2 \\  \\ x +  \frac{1}{x}  = 4

And,

On cubing both sides.

(x +  \frac{1}{x} ){}^{3}  = (4) {}^{3} \\  \\ x {}^{3}  +  \frac{1}{x{}^{3} }  + 3(x +  \frac{1}{x} ) = 64 \\  \\ x {}^{3}  +  \frac{1}{x{}^{3} } + 3 \times 4 = 64 \\  \\ x {}^{3}  +  \frac{1}{x{}^{3} } + 12 = 64 \\  \\ x {}^{3}  +  \frac{1}{x{}^{3} } = 64 - 12 \\  \\  \boxed{ \bold{ x {}^{3}  +  \frac{1}{x{}^{3} } = 52}}


_______________________

Thanks for the question!

☺️☺️☺️

BrainlyQueen01: I'm sorry, coz uh have not, I have blocked you!
BrainlyQueen01: Because a normal user cannot block a mod.
Similar questions