Math, asked by rakshit1912, 1 year ago

if x=2-√3 ,then find value of ( x-1/x)^3

Answers

Answered by LovelyG
7

Answer:

\large{\underline{\boxed{\sf - 24 \sqrt {3}}}}

Step-by-step explanation:

Given that ;

x = 2 - √3

Now, find the value of 1/x.

 \sf x = 2 -  \sqrt{3}  \\  \\ \implies \sf  \frac{1}{x}   = \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\ \implies \sf  \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{(2) {}^{2} - ( \sqrt{3}) {}^{2}  }  \\  \\ \implies \sf  \frac{1}{x}  =  \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\ \implies \sf  \frac{1}{x}  = 2 +  \sqrt{3}

Find the value of x - (1/x).

\implies \sf x -  \frac{1}{x}  = 2 -  \sqrt{3}  -(2 +  \sqrt{3} ) \\  \\ \implies \sf x -  \frac{1}{x}  = 2 -  \sqrt{3}  - 2 -  \sqrt{3}  \\  \\ \implies \sf x -  \frac{1}{x}  =  - 2 \sqrt{3}

Therefore,

\implies \sf (x -  \frac{1}{x} ) {}^{3}  = ( - 2 \sqrt{3}) {}^{3}  \\  \\ \implies \sf (x -  \frac{1}{x} ) {}^{3}  =  - 24 \sqrt{3}

Hence, the answer is (-24√3).

Similar questions