Math, asked by prakashrvg2000, 1 year ago

If x=2-root under3, find the value lf (x+1/x)cube+(x+1/x)square+(x+1/x)-100.

Answers

Answered by Muskan1101
8
Here's your answer !!

_______________________________

We have to find value of ,

 = > {(x + \frac{1}{x}) }^{3} + {(x + \frac{1}{x}) }^{2} + (x + \frac{1}{x}) - 100 ...(1)

It's given that,

 = > x = 2 - \sqrt{3}

So,

 = > \frac{1}{x} = \frac{1}{2 - \sqrt{3} }

By rationalising it ,we get :-

 = > \frac{1}{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} }

 = > \frac{2 + \sqrt{3} }{ {(2)}^{2} - {( \sqrt{3}) }^{2} }

 = > \frac{2 + \sqrt{3} }{1}

 = > \frac{1}{x} = 2 + \sqrt{3}

By putting value of x and 1/x in equation (1), we get :-

 = &gt; {(2 - \sqrt{3} + 2 + \sqrt{3}) }^{3} + {(2 - \sqrt{3} + 2 + <br />\sqrt{3}) }^{2} + (2 - \sqrt{3} + 2 + \sqrt{3} ) - 100

 = &gt; ({(4)}^{3} + {(4)}^{2} + 4) - 100 \\ = &gt; (64 + 16 + 4) - 100 \\ = &gt; 84 - 100 \\ = &gt; - 16

_________________________________

Hope it helps you !! :)
Similar questions