If x = 2+underoot3 find value of underfoot x +1\underootx
Attachments:
Answers
Answered by
1
x = 2 + √3
√x + 1/√x
= (x + 1) / √x
= (2 + √3 + 1) / √(2 + √3)
= (3 + √3) / √(2 + √3)
=√[(3 + √3)²/(2 + √3)]
= √[(9 + 3 + 6√3)/(2 + √3)]
= √[(12 + 6√3)/(2 + √3)]
= √{[12 + 6√3) * (2 - √3)] / [(2 + √3) * (2 - √3)]}
= √{[12 + 6√3) * (2 - √3)] / [4 - 3]}
= √(24 + 12√3 - 12√3 - 18)
= √6
√x + 1/√x
= (x + 1) / √x
= (2 + √3 + 1) / √(2 + √3)
= (3 + √3) / √(2 + √3)
=√[(3 + √3)²/(2 + √3)]
= √[(9 + 3 + 6√3)/(2 + √3)]
= √[(12 + 6√3)/(2 + √3)]
= √{[12 + 6√3) * (2 - √3)] / [(2 + √3) * (2 - √3)]}
= √{[12 + 6√3) * (2 - √3)] / [4 - 3]}
= √(24 + 12√3 - 12√3 - 18)
= √6
tanishqsingh:
This isn't the right method though.
Answered by
3
I am not sure that this is the answer......
please like and follow if it helps.....
please like and follow if it helps.....
Attachments:
Similar questions