if x+2k is a factor of p(x)=x^5-4k^2x^3+2x+2k+3,
find k
Answers
Answered by
14
Answer :
Given polynomial is
p(x) = x^5 - 4k²x³ + 2x + 2k + 3
Since, (x + 2k) is a factor of p(x), x = - 2k will satisfy the polynomial valuing to 0.
So, (-2k)^5 - 4k(-2k)³ + 2(-2k) + 3 = 0
⇒ -32k^5 + 32k^5 - 4k + 3 = 0
⇒ -4k + 3 = 0
⇒ 4k = 3
⇒ k = 3/4
∴ k = 3/4
#MarkAsBrainliest
Given polynomial is
p(x) = x^5 - 4k²x³ + 2x + 2k + 3
Since, (x + 2k) is a factor of p(x), x = - 2k will satisfy the polynomial valuing to 0.
So, (-2k)^5 - 4k(-2k)³ + 2(-2k) + 3 = 0
⇒ -32k^5 + 32k^5 - 4k + 3 = 0
⇒ -4k + 3 = 0
⇒ 4k = 3
⇒ k = 3/4
∴ k = 3/4
#MarkAsBrainliest
Answered by
0
Answer:
k=3/2
Step-by-step explanation:
x+2k is a factor of
p(x)=x^5 - 4k^2x^3+2x+2k+3
x+2k=0
x= (-2k)
p(-2k) = (-2k)^5 - 4k^2 (-2k)^3 + 2 (-2k) + 2k + 3 = 0
(-2*-2*-2*-2*-2)k - 4k^2 * (-2*-2*-2)k + (-4k) + 2k + 3= 0
-32k^5 - 4k^2 * (-8k^3) + [(-4k) + 2k] + 3 = 0
-32k^5 + 32k^5 - 2k + 3 = 0
-2k + 3= 0
-2k= (-3)
k= -3/-2 [ negative / negative = positive]
Final answer:
k= 3/2
Similar questions