Math, asked by shivramn4, 5 months ago

If x=2sinƟ and y=2cosƟ, and sinƟcosƟ=2 then find (x+y)
²​

Answers

Answered by Anonymous
22

Question :

If \sf{x = 2sin\:\theta}, \sf{y = 2cos\:\theta} and \sf{sin\:\theta cos\:\theta = 2} then find the value of \sf{(x + y)^{2}}

Answer :

  • The value of the equation \sf{(x + y)^{2}} is 20.

Explanation :

Given :

  • The value of \sf{x = 2sin\:\theta}.
  • The value of \sf{y = 2cos\:\theta}.
  • The value of \sf{(x + y)^{2}}.

To find :

  • The value of the equation \sf{(x + y)^{2}} = ?

Knowledge required :

  • \sf{sin^{2}\theta + cos^{2}\theta = 1}
  • \sf{(a + a)^{2}) = a^{2} + b^{2} + 2ab}

Solution :

By substituting the values of x and y in the given equation, we get :

:\implies \sf{(x + y)^{2}} \\ \\ :\implies \sf{(x + y)^{2} = (2sin\:\theta + 2cos\:\theta)^{2}} \\ \\ :\implies \sf{(x + y)^{2} = 4sin^{2}\theta + 4cos^{2}\theta + 2 \times 2sin\:\theta \times 2cos\:\theta} \\ \\ :\implies \sf{(x + y)^{2} = 4(sin^{2}\theta + cos^{2}\theta) + 2 \times 2sin\:\theta \times 2cos\:\theta} \\ \\ :\implies \sf{(x + y)^{2} = 4(1) + 8sin\:\theta cos\:\theta} \\ \\ :\implies \sf{(x + y)^{2} = 4(1) + 8(2)} \\ \\ :\implies \sf{(x + y)^{2} = 4 + 16} \\ \\ :\implies \sf{(x + y)^{2} = 20} \\ \\ \underline{\underline{\therefore \sf{(x + y)^{2} = 20}}} \\ \\

Therefore,

  • The value of the equation \sf{(x + y)^{2}} = 20
Answered by TheBrainlyopekaa
35

\huge{\boxed{\bold{Question}}}

If x=2sinƟ and y=2cosƟ, and sinƟcosƟ=2 then find (x+y)²

 \boxed { \bold{ \tt \: solution}} \\  \\   \rm \longmapsto \: (x + y) ^{2}  \\  \\  \\  \longmapsto \rm \: (x + y) ^{2} = (2sin \theta + 2cos \theta) ^{2}   \\  \\  \\  \longmapsto \rm(x + y) ^{2}  = 4sin ^{2}  \theta \:  + 4cos ^{2}  \theta + 2 \times 2sin \theta \times 2cos \\  \\  \\  \longmapsto \rm \: (x + y) ^{2}  = 4sin ^{2}  \theta \:  + cos ^{2}  \theta) + 2 \times 2sin \theta \times 2cos \theta \\  \\  \\ \longmapsto  \rm \: (x + y) ^{2}  = 4(1) + 8sin \theta \: cos \theta \\  \\  \\  \longmapsto \rm \: (x + y) ^{2}  = 4(1) + 8(2) \\  \\  \\  \longmapsto \rm \: (x + y) ^{2}  = 4 + 16 \\  \\  \\  \longmapsto \rm(x + y) ^{2} = 20 \\  \\  \\  \longmapsto \rm(x + y) ^{2}   = 20 \boxed { \bold{ \sf answer}}

Similar questions