Math, asked by Anonymous, 1 year ago

if x = 3 - 2√2, find the value of √x+1/√x


rollingthunder: the answer is terribly long

Answers

Answered by Lipimishra2
3
Answer in attachment: Please comment if you know it's wrong.
Attachments:
Answered by pinquancaro
0

Answer:

The value of the expression is \sqrt{x}+\frac{1}{\sqrt{x}}=2\sqrt2      

Step-by-step explanation:

Given : x=3-2\sqrt2

To find : The value of \sqrt{x}+\frac{1}{\sqrt{x}}

Solution :

First we find, the value of \frac{1}{x}

\frac{1}{x}=\frac{1}{3-2\sqrt2}

Rationalize,

\frac{1}{x}=\frac{1}{3-2\sqrt2}\times \frac{3+2\sqrt2}{3+2\sqrt2}

\frac{1}{x}=\frac{3+2\sqrt2}{3^2-(2\sqrt2)^2}

\frac{1}{x}=\frac{3+2\sqrt2}{9-8}

\frac{1}{x}=3+2\sqrt2

Now,

Expression \sqrt{x}+\frac{1}{\sqrt{x}}

Squaring the expression,

(\sqrt{x}+\frac{1}{\sqrt{x}})^2=x+frac{1}{x}+2x\times \frac{1}{x}

Substitute the values,

(\sqrt{x}+\frac{1}{\sqrt{x}})^2=3-2\sqrt2+3+2\sqrt2+2

(\sqrt{x}+\frac{1}{\sqrt{x}})^2=6+2

(\sqrt{x}+\frac{1}{\sqrt{x}})^2=8

Taking root both side,

\sqrt{x}+\frac{1}{\sqrt{x}}=\sqrt8

\sqrt{x}+\frac{1}{\sqrt{x}}=2\sqrt2

Therefore, The value of the expression is \sqrt{x}+\frac{1}{\sqrt{x}}=2\sqrt2

Similar questions