If x = √3+√2/ √3-√2 , find the value of x^2 + 2/x^2 and x^4 + 1/x^4 .
Answers
Answer:
Step-by-step explanation:
Step-by-step explanation:
We have,
x=3+2\sqrt{2}
To find, the value of x^{4} +\dfrac{1}{x^{4}} =?
∴ \dfrac{1}{x} =\dfrac{1}{3+2\sqrt{2}}
Rationalising, we get
\dfrac{1}{x} =\dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}
=\dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}=\dfrac{3-2\sqrt{2}}{9-8}
\dfrac{1}{x} =3-2\sqrt{2}
∴ (x+\frac{1}{x})^{2}=x^{2}+(\dfrac{1}{x})^{2}+2.x.\dfrac{1}{x}
⇒ (3+2\sqrt{2}+3-2\sqrt{2})^{2}=x^{2}+\dfrac{1}{x^{2}} +2
⇒ x^{2}+\dfrac{1}{x^{2}} =36-2=34 .....(1)
Again squaring (1), we get
(x^{2}+\dfrac{1}{x^{2}} )^{2} =34^{2}
x^{4}+\dfrac{1}{x^{4}} +2=1156
⇒ x^{4}+\dfrac{1}{x^{4}} =1156-2=1154
Hence, x^{4}+\dfrac{1}{x^{4}}=1154Step-by-step explanation:
We have,
x=3+2\sqrt{2}
To find, the value of x^{4} +\dfrac{1}{x^{4}} =?
∴ \dfrac{1}{x} =\dfrac{1}{3+2\sqrt{2}}
Rationalising, we get
\dfrac{1}{x} =\dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}
=\dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}=\dfrac{3-2\sqrt{2}}{9-8}
\dfrac{1}{x} =3-2\sqrt{2}
∴ (x+\frac{1}{x})^{2}=x^{2}+(\dfrac{1}{x})^{2}+2.x.\dfrac{1}{x}
⇒ (3+2\sqrt{2}+3-2\sqrt{2})^{2}=x^{2}+\dfrac{1}{x^{2}} +2
⇒ x^{2}+\dfrac{1}{x^{2}} =36-2=34 .....(1)
Again squaring (1), we get
(x^{2}+\dfrac{1}{x^{2}} )^{2} =34^{2}
x^{4}+\dfrac{1}{x^{4}} +2=1156
⇒ x^{4}+\dfrac{1}{x^{4}} =1156-2=1154
Hence, x^{4}+\dfrac{1}{x^{4}}=1154Step-by-step explanation:
We have,
x=3+2\sqrt{2}
To find, the value of x^{4} +\dfrac{1}{x^{4}} =?
∴ \dfrac{1}{x} =\dfrac{1}{3+2\sqrt{2}}
Rationalising, we get
\dfrac{1}{x} =\dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}
=\dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}=\dfrac{3-2\sqrt{2}}{9-8}
\dfrac{1}{x} =3-2\sqrt{2}
∴ (x+\frac{1}{x})^{2}=x^{2}+(\dfrac{1}{x})^{2}+2.x.\dfrac{1}{x}
⇒ (3+2\sqrt{2}+3-2\sqrt{2})^{2}=x^{2}+\dfrac{1}{x^{2}} +2
⇒ x^{2}+\dfrac{1}{x^{2}} =36-2=34 .....(1)
Again squaring (1), we get
(x^{2}+\dfrac{1}{x^{2}} )^{2} =34^{2}
x^{4}+\dfrac{1}{x^{4}} +2=1156
⇒ x^{4}+\dfrac{1}{x^{4}} =1156-2=1154
Hence, x^{4}+\dfrac{1}{x^{4}}=1154
Answer:
Hey mate! check the attachment for ur answer!