Math, asked by ritvikh2, 10 months ago

if x = √3+√2/√3-√2 then find the value of x²​

Answers

Answered by rajnitiwari192003
45

Answer:

x= √3+√2/√3-√2

x²= (√3+√2/√3-√2)²

using

  • (a-b)²=a²+b²-2ab
  • (a+b)²=a²+b²+2ab

x²=(√3)²+(√2)²+2(√3)(√2)/ (√3)²+(√2)²-2(√3)(√2)

3+2+2√6/3+2-2√6

5+2√6/5-2√6

Rationalising the denominator

(5+2√6)²/(5-2√6)(5+2√6)

using

  • (a+b)²=a²+b²+2ab
  • (a-b)(a+b)= a²-b²

(5)²+(2√6)²+2(5)(2√6) / (5)²-(2√6)²

25+24+20√6 / 25-24

x²=48+20√6

Answered by rinayjainsl
2

Answer:

The value of given expression is

 {x}^{2}  = 49 + 20 \sqrt{6}

Step-by-step explanation:

The given variable is

x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

We shall rationalise the number first by multiplying and dividing the number with rationalising factor of denominator.Performing the operation gives

x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\  =  \frac{( \sqrt{3}  +  \sqrt{2} ) {}^{2} }{( \sqrt{3} ) {}^{2}  -  {( \sqrt{2} )}^{2} }  \\  =  \frac{5 + 2 \sqrt{6} }{3 - 2}  = 5 + 2 \sqrt{6}

Squaring it will result as shown below

 {x}^{2}  =  {(5 + 2 \sqrt{6} )}^{2}  \\  =  {5}^{2}  + (2 \sqrt{6} ) {}^{2} + 2(5)(2 \sqrt{6}  ) \\  = 25 + 24 + 20 \sqrt{6}  \\  = 49 + 20 \sqrt{6}

Hence the value of given expression is

 {x}^{2}  = 49 + 20 \sqrt{6}

#SPJ2

Similar questions