Math, asked by apubhuyan, 1 year ago

if x=-3+2i prove that x^2+6x+13=0

Answers

Answered by MarkAsBrainliest
11

Answer :

Given that,

x = - 3 + 2i

Now,

x² + 6x + 13

= (- 3 + 2i)² + 6 (- 3 + 2i) + 13

= 9 - 12i + 4i² - 18 + 12i + 13

= 4i² + 0i + 4

= - 4 + 4, since i² = - 1

= 0

Hence, proved.

#MarkAsBrainliest

Answered by iHelper
5
Hello!

• x = - 3 + 2i

Then,

L.H.S. = x² + 6x + 13

= (- 3 + 2i)² + 6 (- 3 + 2i) + 13

= 9 - 12i + 4i² - 18 + 12i + 13

= 4i² + 0i + 4

= - 4 + 4 = 0 = R.H.S.

\boxed{\sf x^{2} + 6x + 13 = \sf 0}

Cheers!
Similar questions