If x = 3+√8, find the value of x² + 1/x² .
Answers
Given : x = 3 + √8
To find : value of x² + 1/x² .
We have , x = 3 +√8
∴ 1/x = 1/(3 +√8)
On Rationalising the denominator :
1/x = 1 × (3 -√8)/ [(3 +√8) × (3 -√8)]
1/x = (3 -√8)/[3² - √8²]
[By Using Identity : (a + b)(a – b) = a² - b²]
1/x = (3 - √8)/[9 - 8]
1/x = 3 - √8/1
1/x = 3 - √8
Thus, x + 1/x = (3 + √8) + (3 - √8)
x + 1/x = 3 + √8 + 3 - √8
x + 1/x = 6
We know that, x² + (1/x)² = (x + 1/x)² - 2
x² + 1/x² = 6² - 2
x² + 1/x² = 36 - 2
x² + 1/x² = 34
Hence the value of x² + 1/x² is 34 .
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
If x²+1/x²=51, find the value of x³ - 1/x³
https://brainly.in/question/15897606
If x = 2+ √3, find the value of x³ + 1/x³
https://brainly.in/question/15897358
Step-by-step explanation:
GIVEN,
x = 3+ √8
we given the task
x² + 1/x²
solving the equation
Putting the value
x = (3+√8)(3-√8) / (3-√8)+(3 -√8)²
x = (9 -8) / (3-√8)+(3 -√8)²
x = 1/ (3 -√8)+(3 -√8)²
x = 9+6√8+8 + 9–6√8+8
x = 34. Ans.