Math, asked by gambhirevedang, 10 months ago

If x=3-√8 then x3+1/x3=?

Answers

Answered by Cynefin
14

━━━━━━━━━━━━━━━━━━━━

☸ Question:

☛If x=3-√8 then x3+1/x3=.........?

☸ Answer:

☛Given data is as follows:

 \star{ \large{ \sf{ \boxed{ \purple{ \: \: x = 3 - \sqrt{8}}}.....equation(1)}}} \\ \\ ⇢ \large{ \sf{ \frac{1}{x} = \frac{1}{3 - \sqrt{8} } }} \\ \sf{ \underline{ \underline{ \dag{ \green{ \: \: rationalizing \: the \: denominator}}}}} \\ \\ ⇢ \large{ \sf{ \frac{1}{x} = \frac{3 + \sqrt{8} }{(3 - \sqrt{8})(3 + \sqrt{8} )} }} \\ \\ ⇢ \large{ \sf{ \frac{1}{x} = \frac{3 + \sqrt{8} }{ \: \: {3}^{2} - {( \sqrt{8}) }^{2} } }} \\ \\ ⇢ \large{ \sf{ \frac{1}{x} = \frac{3 + \sqrt{8} }{9 - 8} }} \\ \\ ⇢ \large{ \sf{ \frac{1}{x} = 3 + \sqrt{8} ......equation(2)}}

Adding equation (1) and equation (2)⇢\large{ \sf{x + \frac{1}{x} = 3 \cancel{- \sqrt{8} }+ 3 + \cancel{ \sqrt{8} }}} \\ \\ ⇢ \large{ \sf{x + \frac{1}{x} = 6.........equation(3)}}

We have to find, x3+1/x3

 \large{ \sf{ \star{ we \: know.....}}} \\ \\ \large{ \boxed{ \purple{ \sf{ {a}^{3} + {b}^{3} = (a + b) {}^{3} - 3ab(a + b)}}}} \\ \\ \large{ \sf{ \star{by \: using \: this \: identity....}}} \\ \\ ⇢ \large{ \sf{ {x}^{3} + \frac{1}{ {x}^{3} } = (x + \frac{1}{x} ) {}^{3} - 3 \times \cancel{x }\times \frac{1}{ \cancel{x}} (x + \frac{1}{x} )}} \\ \\ ⇢ \large{ \sf{ {x}^{3} + \frac{1}{ {x}^{3} } = (x + \frac{1}{x} ) {}^{3} - 3(x + \frac{1}{x} )}} \\ \\ \large{ \sf{ \star{by \: putting \: value \: obtained \: in \: equation(3)}}} \\ \\ ⇢ \large{ \sf{ {x}^{3} + \frac{1}{ {x}^{3} } = (6) {}^{3} - 3(6)}} \\ \\ ⇢ \large{ \sf{ {x}^{3} + \frac{1}{ {x}^{3} } = 216 - 18}} \\ \\ ⇢ \large{ \boxed{ \pink{ \sf{ {x}^{3} + \frac{1}{ {x}^{3} } = 198}}}}

☸ So Final Answer:

 \huge{ \boxed{ \bold{ \red{ = 198}}}}

━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
15

{ \sf{ \underline{✒Given:-}}}

x = 3 -  \sqrt{8}

{ \sf{ \underline{✒To \: Find:-}}}

Value \: of \:  {x}^{3} +  \frac{1}{ {x}^{3} }

{ \sf { \underline{✒Solution:-}}}

 \frac{1}{x }  =  \frac{1}{3 -  \sqrt{8} }  \times  \frac{3 +  \sqrt{8} }{3 +  \sqrt{8} }

 \frac{1}{x}  =  \frac{3 +  \sqrt{8} }{ {3}^{2}  -  { \sqrt{8} }^{2} }

 \frac{1}{x}  =  \frac{3 +  \sqrt{8} }{9 - 8}

 \frac{1}{x}  = 3 +  \sqrt{8}

Now,

 \frac{x + 1}{x}  = 3 -  \sqrt{8}  + 3 +  \sqrt{8}

Hence,

 \frac{x + 1}{y}  = 6

Cubing both sides we get :-

( \frac{x + 1}{x} )^{3}  =  {6}^{3}

 {x}^{3}  +  \frac{1}{ {x}^{3} } + 3(6) = 216

{ \bf{ \boxed{ \pink{ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 198}}}}.

SO THE REQUIRED ANSWER IS 198 .

____________________________________________________

Similar questions