if(x+3)(x-b)=x2+7x+a is an identity then find a and b
Answers
Answered by
1
Answer:
a=12
b=(-4)
Step-by-step explanation:
(x+3)(x-b)=x2+7x+a [(a+b)(c+d)=(ac)+(ad)+(bc)+(bd)]
(x*x)+(x*-b)+(3*x)+(3*-b)=x2+7x+a
x2-bx+3x-3b=x2+7x+a
(3x-bx)-3b=7x+a [x2 on both sides gets cancelled]
therefore,
3x-bx=7x
(3-b)x=7x
3-b=7. [x on both sides gets cancelled]
b=-4
therefore,
-3b=a
-3(-4)=a
a=12
Similar questions