Math, asked by prakhar45, 1 year ago

if x^3+y^3=3axy so prove that d^2y/dx^2 = 2a^3xy/(ax-y^2)^3

Answers

Answered by Anant02
4

 {x}^{3}  +  {y}^{3} =  3axy \\  \frac{ {d}^{2} y}{d {x}^{2} }  =( 2 {a}^{3} xy) \div  {(ax -  {y}^{2}) }^{3}  \\  \frac{d}{dx} ( {x}^{3}  +  {y}^{3}  = 3axy) \\ 3 {x}^{2}  + 3 {y}^{2}  \frac{dy}{dx}  = 3a(y + x \frac{dy}{dx} ) \\  \frac{dy}{dx} (3 {y}^{2}  - 3ax) = 3ay - 3 {x}^{2}  \\  \frac{dy}{dx}  =  \frac{ay -  {x}^{2} }{ {y}^{2} - ax }  \\  \frac{ {d}^{2} y}{d {x}^{2} }  =  \frac{( {y}^{2} - ax)(a \frac{dy}{dx}  - 2x)  - (ay -  {x}^{2} )(2y \frac{dy}{dx}  - a)}{ {( {y}^{2} - ax) }^{2} }  \\  =  \frac{ \frac{dy}{dx}(a {y}^{2}  -  {a}^{2} x  - 2a {y}^{2}  +  2 {x}^{2} y)  - 2x {y}^{2} + 2a {x}^{2} +  {a}^{2}y - a {x}^{2}  }{{( {y}^{2}  - ax)}^{2} }  \\   = \frac{(ay -  {x}^{2} )(a {y}^{2} -  {a}^{2} x - 2a {y}^{2} + 2 {x}^{2}y) - ( {y}^{2} - ax)(2x {y}^{2} - 2a {x}^{2} -  {a}^{2}y + a {x}^{2}) }{ {( {y}^{2} - ax) }^{3} }  \\  =  \frac{ - 2 {a}^{3}xy }{ { ({y}^{2} - ax) }^{3} }  \\  =  \frac{2 {a}^{3}xy }{ {(ax -  {y}^{2}) }^{3} }
Similar questions