Math, asked by AmazingSyed, 1 year ago

If x = 5+2√6 find the value of √x+1/√x

Answers

Answered by MsQueen
6
\bold{\underline{\pink{\star\:HEY\: MATE\:\star}}}

x = 5 + 2 \sqrt{6} \\ \\ ⇒ \frac{1}{x} = \frac{1}{5 + 2 \sqrt{6} } \times \frac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} } \\ \\ ⇒ \frac{1}{x } = \frac{5 - 2 \sqrt{6} }{25 - 24} = 5 - 2 \sqrt{6}

Now,

⇒x = 5 + 2√6

⇒x = 3 + 2 + 2√3√2

⇒x = (√3)² + 2√3√2 + (√2)²

⇒x = (√3 + √2)²

⇒√x = √3 + √2

Now,

⇒1/√x = 1/√3 + √2

⇒1/√x = 1/√3 + √2 × √3 - √2/√3 - √2

⇒1/√x = √3 - √2/3 - 2

⇒1/√x = √3 - √2

\therefore √x + 1/√x

⇒√3 + √2 + √3 - √2

⇒√3 + √3

⇒2√3

Thanks for the question!

✌✌✌
Answered by pankajroy2
0

Answer:

here is ur ans....

x=5+2

6

x

1

=

5+2

6

1

×

5−2

6

5−2

6

x

1

=

25−24

5−2

6

=5−2

6

Now,

x = 5 + 2√6

x = 3 + 2 + 2√3√2

x = (√3)² + 2√3√2 + (√2)²

x = (√3 + √2)²

√x = √3 + √2

Now,

1/√x = 1/√3 + √2

1/√x = 1/√3 + √2 × √3 - √2/√3 - √2

1/√x = √3 - √2/3 - 2

1/√x = √3 - √2

∴\therefore∴ √x + 1/√x

√3 + √2 + √3 - √2

√3 + √3

2√3 ... ans

☺hope it helps u☺

Similar questions