Math, asked by Avi2411, 1 year ago

if x=(5-√21)/2 , prove that (x^3 + 1/x^3) -5(x^2 + 1/x^2) + (x + 1/x) = 0

Attachments:

Answers

Answered by rajivnld2002p7qvsa
2
x=(5-√21)/2
1/x=2/(5-√21)=2(5+√21)/4=(5+√21)/2

now,
x+1/x=5
x^2+1/x^2=5^2-2=23

x^3+1/x^3=5^3-3*5=110

putting values

110-5*23+5=0

rajivnld2002p7qvsa: pl. comment
Avi2411: the question is incorrect?
rajivnld2002p7qvsa: what is correct one
Avi2411: The question which you solved right now is correct?
rajivnld2002p7qvsa: ya i edited my sol, pl. go through, made one mistake, sorry
rajivnld2002p7qvsa: sorry for the mistake made earlier, pl. mark it brainliest
Avi2411: okk
Avi2411: Bro, I'm new to Brainly.. how to mark someone BRAINLIEST?
rajivnld2002p7qvsa: u got the sol well na..
rajivnld2002p7qvsa: in top of the answer there would be a option to mark brainliest
Answered by Anonymous
26

Answer:

⇒110 - 110 = 0 ( proved )

Step-by-step explanation:

Given ;

 =  > x =  \frac{5 -  \sqrt{21} }{2}

To prove ;

 =  > (x^{3}   +  \frac{1}{x^{3} } ) - 5(x^{2}  +  \frac{1}{x^{2} })  + (x +  \frac{1}{x}) = 0

Solution ;

Hence ,

 =  >  \frac{1}{x}  =  \frac{2}{5 -  \sqrt{21} }

 =  >  \frac{2}{5 -  \sqrt{21} }  \times  \frac{(5 +  \sqrt{21} )}{(5 +  \sqrt{21})}

 =  >  \frac{2(5 +  \sqrt{21}) }{(5) ^{2}  - ( \sqrt{21})^{2}  }

 =  >  \frac{2(5 +  \sqrt{21}) }{(25 - 21)}

 =  >  \frac{2(5 +  \sqrt{21} )}{4}  =  \frac{5 +  \sqrt{21} }{2}

Hence ,

 =  > x +  \frac{1}{x}  = ( \frac{5 -  \sqrt{21} }{2} ) + ( \frac{5 +  \sqrt{21} }{2} )

 =  >  \frac{5 -  \sqrt{21}   + 5 +  \sqrt{21} }{2}

 =  >  \frac{10}{2}  = 5

Hence ,

 =  > (x +  \frac{1}{x} )^{2}  = 5^{2}  = 25

 =  > x^{2}  +  \frac{1}{x^{2} } + 2 \times x \times  \frac{1}{x}  = 25

 =  > (x^{2}  +  \frac{1}{x^{2} }) + 2 = 25

 =  > (x^{2}  +  \frac{1}{x^{2} } ) = 25 - 2 = 23

And , x + 1/x = 5

 =  > (x +  \frac{1}{x} )^{3}  = (5) ^{3}  = 125

 =  > x^{3}  +  \frac{1}{x^{3} }  + 3 \times x \times  \frac{1}{x} ( x +  \frac{1}{x}) = 125

 =  > (x^{3}  +  \frac{1}{x^{3}  }) = 125 - 15 = 110

Hence ,

 =  > (x^{3}   +  \frac{1}{x^{3} } ) - 5(x^{2}  +  \frac{1}{x^{2} })  + (x +  \frac{1}{x}) = 0

⇒110 - 5 × 23 + 5

⇒110 - 115 + 5

⇒110 - 110 = 0

Similar questions