Math, asked by aggarwalmayank343, 3 months ago

if x-√5 is a factor of the cubic polynomial x3-3√5x2+13x-3√5 , then find all the zeroes of the polynomial​

Answers

Answered by Anonymous
1

Answer:

Step-by-step explanation:

A

5

​  

,  

5

​  

+  

2

​  

,  

5

​  

−  

2

​  

 

If (x−  

5

​  

) is a factor, then we can write:  

x  

3

–3  

5

​  

x  

2

+13x–3  

5

​  

=(x–  

5

​  

)(x  

2

+bx+3)  

 

To determine the coefficient b, let's expand the product:  

(x–  

5

​  

)(x  

2

+bx+3)=x  

3

+bx  

2

+3x–(  

5

​  

)x  

2

–(  

5

​  

)bx–3  

5

​  

 

(x–  

5

​  

)(x  

2

+bx+3)=x  

3

+(b–  

5

​  

)x  

2

+(3–b  

5

​  

)x–3  

5

​  

   

Comparing the right hand side to the original expression, we obtain  

b–  

5

​  

=−3  

5

​  

⇒b=−2  

5

​  

, or, with the same result:  

3–b  

5

​  

=13

⇒b  

5

​  

=−10

⇒b=−10/  

5

​  

=−2  

5

​  

 

⇒b=−2  

5

​  

   

Therefore,

 

x  

3

–3  

5

​  

x  

2

+13x–3  

5

​  

=(x–  

5

​  

)(x  

2

–2  

5

​  

x+3)

x  

3

–3  

5

​  

x  

2

+13x–3  

5

​  

=0

(x–  

5

​  

)=0,(x  

2

–2  

5

​  

x+3)=0

x–  

5

​  

=0⇒x=  

5

​  

 

x  

2

–2  

5

​  

x+3=0⇒x=  

5

​  

±  

2

​  

 

Hence, the zeros of the given expression are  

5

​  

+  

2

​  

,  

5

​  

−  

2

​  

,  

5

​  

.

Similar questions