Math, asked by Anonymous, 9 months ago

if x = √7 + √5
then find x2 + 1/x2 ​

Answers

Answered by kamleshkantaria
3

Answer:

Step-by-step explanation:

If x = \sqrt{7} + \sqrt{5}

Find x^{2} + 1/

Step 1 =

If x = \sqrt{7} + \sqrt{5}

Then,

1/x = 1/\sqrt{7} + \sqrt{5}

Now rationalize the denominator of number 1/\sqrt{7} + \sqrt{5}

Multiply both the numerator and the denominator of the number with the conjugate of the denominator \sqrt{7} + \sqrt{5}

The conjugate of the denominator is \sqrt{7} - \sqrt{5}

That is,

1/x = 1/\sqrt{7} + \sqrt{5} X

Follow the identity

1/x = \sqrt{7} - \sqrt{5}/(

    = \sqrt{7} - \sqrt{5}/7 - 5

1/x = \sqrt{7} - \sqrt{5}/2

Step 2 = Follow the identity

We know that x = \sqrt{7} + \sqrt{5} and 1/x =  

We have to find x^{2} + 1/

x^{2} = (\sqrt{7} + \sqrt{5})^2

1/x^{2} =  (\sqrt{7} - \sqrt{5}/2)^2

So now go according to the question

That is,

= x^{2} + 1/

= (\sqrt{7} + \sqrt{5})^2 + (

= [(\sqrt{7})^2 + 2(

= [7 + 2\sqrt{35} + 5] + [7 - 2

= 7 + 5 + 2\sqrt{35} + 7 + 5 - 2

= 12 + 2\sqrt{35}/1 + 12 - 2

Take L.C.M of the denominators 1 and 4

That is 4

= 12 X 4 + 2\sqrt{35} X 4/1 + 12 - 2

= 48 + 8\sqrt{35}/4 + 12 - 2

= 48 + 12 + \sqrt{35}(8 - 2)[Took common] whole divided by 4

= 60 + 6\sqrt{35}/4

= 30 + 3\sqrt{35}/2(x^{2} + 1/x^{2})

Similar questions