Math, asked by kimberlyxo, 9 months ago

if x=9-4√5, find the value of x² + 1/x²​

Answers

Answered by BrainlyPopularman
4

Question :

▪︎ If  { \bold{x = 9 - 4 \sqrt{5} }} then find the value of  { \bold{ {x}^{2} +  \dfrac{1}{ {x}^{2} }   =  ? }}

ANSWER :

   \\    \longrightarrow{  \red {\boxed{ \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }    =  322 }}}}  \\

EXPLANATION :

GIVEN :

  \\ {   \implies \:  \bold{x = 9 - 4 \sqrt{5} }} \\

TO FIND :

  \\ \implies { \bold{ {x}^{2} +  \dfrac{1}{ {x}^{2} }   =  ? }}  \\

SOLUTION :

First , we have to find     \:  \:  \: { \bold{  \dfrac{1}{x}   \:  \:  - }}  \\

   \\   \implies{ \bold{  \dfrac{1}{x}   \:  \:   =  \frac{1}{9 - 4 \sqrt{5} }  }}  \\

• Now Rationalization –

   \\   \implies{ \bold{  \dfrac{1}{x}   \:  \:   =  \frac{1}{9 - 4 \sqrt{5} }  \times  \frac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} }  }}  \\

   \\   \implies{ \bold{  \dfrac{1}{x}   \:  \:   =  \frac{9 + 4 \sqrt{5} }{(9)^{2}  - (4 \sqrt{5}) ^{2}  }  }}  \\

   \\   \implies{ \bold{  \dfrac{1}{x}   \:  \:   =  \frac{9 + 4 \sqrt{5} }{81  - 80  }  }}  \\

   \\   \implies{ \bold{  \dfrac{1}{x}   \:  \:   =  9 + 4 \sqrt{5}   }}  \\

• We know a property –

   \\   \implies{ \pink{  \boxed{\bold{   {(a + b)}^{2}  =  {a}^{2} +  {b}^{2}  + 2ab }}}}  \\

• So that –

   \\   \implies{ \bold{   {(x +  \frac{1}{x} )}^{2}  =  {x}^{2} +   \dfrac{1}{ {x}^{2} }   + 2( \cancel x)(   \frac{1}{ \cancel x} ) }}  \\

   \\   \implies{ \bold{   {(x +  \frac{1}{x} )}^{2}  =  {x}^{2} +   \dfrac{1}{ {x}^{2} }   + 2  }}  \\

• We should write this as –

   \\   \implies{ \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }    =  {(x +  \frac{1}{x} )}^{2}   - 2 }}  \\

• Now put the values –

   \\   \implies{ \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }    =  {(9 -  \cancel{4 \sqrt{5} } +9 + { \cancel{4 \sqrt{5} }} )}^{2}   - 2 }}  \\

   \\   \implies{ \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }    =  {(18)}^{2}   - 2 }}  \\

   \\   \implies{ \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }    =  324   - 2 }}  \\

   \\   \implies{ \boxed{ \bold{ {x}^{2} +   \dfrac{1}{ {x}^{2} }    =  322 }}}  \\

Similar questions