Math, asked by adammya123kul, 1 year ago

if x+a is a common factor of f(x)=x^(2) +px+q and g(x)=x^(2) +lx+m . Show that: a=(q-m)/(p-l)

Answers

Answered by MaheswariS
5

\textbf{Factor theorem:}

\text{(x-a) is a factor of f(x) iff f(a) =0}

\textbf{Given:}

\text{ x+a is a common factor of}

\text{$f(x)=x^2+px+q$ and g(x)=x^2+lx+m$}

\text{Then, by factor theorem,}

\text{$f(-a)=0$ and $g(-a)=0$}

(-a)^2+p(-a)+q=0\;\text{and}\;(-a)^2+l(-a)+m=0

a^2-pa+q=0......(1)\;\text{and}\;a^2-la+m=0.....(2)

\text{subtracting (2) from (1), we get}

-pa+la+q-m=0

-pa+la=-(q-m)

-a(p-l)=-(q-m)

a(p-l)=q-m

\implies\boxed{\bf\,a=\frac{q-m}{p-l}}

Find more:

Find the value is of a and b, if x²-4 is a factor of ax⁴+2x³ -3x²+bx-4.

https://brainly.in/question/15904227

Similar questions