if x/a=y/b=z/c then prove that (x2-yz)/(a2-bc)=(y2-zx)/(b2-ca)=(z2-xy)/(c2-ab)
Answers
refer the solution given in image
If x/a = y/b = c/z then we have to prove that, (x² - yz)/(a² - bc) = (y² - zx)/(b² - ca) = (z² - xy)/(c² - ab)
Let x/a = y/b = c/z = k
∴ x = ak , y = bk and c = zk
Now, (x² - yz)/(a² - bc) = {(ak)² - (bk)(ck)}/(a² - bc)
= {k²(a² - bc)}/(a² - bc)
= k²
Similarly, (y² - zx)/(b² - ca) = {(bk)² - (ck)(ak)}/(b² - ca)
= {k²(b² - ca)}/(b² - ca)
= k²
And, (z² - xy)/(c² - ab) = {(ck)² - (ak)(bk)}/(c² - ab)
= {k²(c² - ab)}/(c² - ab)
= k²
From above, It is clear that, (x² - yz)/(a² - bc) = (y² - zx)/(b² - ca) = (z² - xy)/(c² - ab) = k²
Therefore (x² - yz)/(a² - bc) = (y² - zx)/(b² - ca) = (z² - xy)/(c² - ab)
Hence proved.
Also read similar questions : if (x2-yz)/a=(y2-zx)/b=(z2-xy)/c then prove that (a+b+c)(x+y+z)=ax+by+cz
https://brainly.in/question/14348000
If x2+y2+z2-xy-yz-zx=0
Then,prove that x=y=z
https://brainly.in/question/5659299
#SPJ3