Math, asked by lrkulhari3907, 1 year ago

if x bar is mean of n observations x1 x2 x3 x4.............xn then find sigma { x - xbar}??

Answers

Answered by MaheswariS
30

\textsf{Given:}

\textsf{$x_1,\;x_2\;.....x_n$ are n observations}

\mathsf{Mean,\;\overline{x}=\displaystyle\frac{\Sigma{x_i}}{n}}

\mathsf{Mean,\;\overline{x}=\displaystyle\frac{x_1+x_2+x_3+.........+x_n}{n}}

\textsf{Now,}

\mathsf{\Sigma(x_i-\overline{x})}

\mathsf{=(x_1-\overline{x})+(x_2-\overline{x})+(x_3-\overline{x})+.........+(x_n-\overline{x})}

\mathsf{=(x_1+x_2+x_3+.........+x_n)-n\,\overline{x}}

\mathsf{=n\,\overline{x}-n\,\overline{x}}

\mathsf{=0}

\implies\boxed{\mathsf{\Sigma(x_i-\overline{x})=0}}

Answered by angelpandu
0

Answer:

0

Step-by-step explanation:

given:

\textsf{$x_1,\;x_2\;.....x_n$ are n observations}x

1

,x

2

.....x

n

are n observations

\mathsf{Mean,\;\overline{x}=\displaystyle\frac{\Sigma{x_i}}{n}}Mean,

x

=

n

Σx

i

\mathsf{Mean,\;\overline{x}=\displaystyle\frac{x_1+x_2+x_3+.........+x_n}{n}}Mean,

x

=

n

x

1

+x

2

+x

3

+.........+x

n

\textsf{Now,}Now,

\mathsf{\Sigma(x_i-\overline{x})}Σ(x

i

x

)

\mathsf{=(x_1-\overline{x})+(x_2-\overline{x})+(x_3-\overline{x})+.........+(x_n-\overline{x})}=(x

1

x

)+(x

2

x

)+(x

3

x

)+.........+(x

n

x

)

\mathsf{=(x_1+x_2+x_3+.........+x_n)-n\,\overline{x}}=(x

1

+x

2

+x

3

+.........+x

n

)−n

x

\mathsf{=n\,\overline{x}-n\,\overline{x}}=n

x

−n

x

\mathsf{=0}=0

\implies\boxed{\mathsf{\Sigma(x_i-\overline{x})=0}}⟹

Σ(x

i

x

)=0

Similar questions