if x bar is mean of n observations x1 x2 x3 x4.............xn then find sigma { x - xbar}??
Answers
Answer:
0
Step-by-step explanation:
given:
\textsf{$x_1,\;x_2\;.....x_n$ are n observations}x
1
,x
2
.....x
n
are n observations
\mathsf{Mean,\;\overline{x}=\displaystyle\frac{\Sigma{x_i}}{n}}Mean,
x
=
n
Σx
i
\mathsf{Mean,\;\overline{x}=\displaystyle\frac{x_1+x_2+x_3+.........+x_n}{n}}Mean,
x
=
n
x
1
+x
2
+x
3
+.........+x
n
\textsf{Now,}Now,
\mathsf{\Sigma(x_i-\overline{x})}Σ(x
i
−
x
)
\mathsf{=(x_1-\overline{x})+(x_2-\overline{x})+(x_3-\overline{x})+.........+(x_n-\overline{x})}=(x
1
−
x
)+(x
2
−
x
)+(x
3
−
x
)+.........+(x
n
−
x
)
\mathsf{=(x_1+x_2+x_3+.........+x_n)-n\,\overline{x}}=(x
1
+x
2
+x
3
+.........+x
n
)−n
x
\mathsf{=n\,\overline{x}-n\,\overline{x}}=n
x
−n
x
\mathsf{=0}=0
\implies\boxed{\mathsf{\Sigma(x_i-\overline{x})=0}}⟹
Σ(x
i
−
x
)=0