Math, asked by suhani8636, 1 year ago

if X equal 4 minus root 15 find the value of x plus one upon x and x minus one upon x​

Answers

Answered by ihrishi
0

Step-by-step explanation:

Given: \\ x = 4 -  \sqrt{15}  \\  \therefore \: x +  \frac{1}{x}  =  \frac{ {x}^{2} + 1 }{x}  \\  =  \frac{( {4 -  \sqrt{15} )}^{2}  + 1}{4 -  \sqrt{15} }  \\  =  \frac{ {4}^{2} +  (\sqrt{15})^{2}   - 2 \times 4 \times  \sqrt{15}   + 1}{4 -  \sqrt{15}}  \:   \\   = \frac{16 + 15 - 8 \sqrt{15} + 1 }{4 -  \sqrt{15}}  \\ = \frac{32 - 8 \sqrt{15} }{4 -  \sqrt{15}}   \\  =  \frac{8(4 -  \sqrt{15} )}{4 -  \sqrt{15}} \\  = 8 \\ thus \: x +  \frac{1}{x}  = 8 \\  \\ now \:  \\ x  -  \frac{1}{x}  =  \frac{ {x}^{2}  -  1 }{x}  \\  =  \frac{( {4 -  \sqrt{15} )}^{2}   -  1}{4 -  \sqrt{15} }  \\  =  \frac{ {4}^{2} +  (\sqrt{15})^{2}   - 2 \times 4 \times  \sqrt{15}    -  1}{4 -  \sqrt{15}}  \:   \\   = \frac{16 + 15 - 8 \sqrt{15}  - 1 }{4 -  \sqrt{15}}  \\ = \frac{30 - 8 \sqrt{15} }{4 -  \sqrt{15}}   \\  =  \frac{2(15-  4\sqrt{15} )}{4 -  \sqrt{15}} \\    = \frac{2  ( \sqrt{15}  \times  \sqrt{15} -  4\sqrt{15} )}{4 -  \sqrt{15}}  \\  =  \frac{ - 2  \sqrt{15}  (  - \sqrt{15}  +   4 )}{4 -  \sqrt{15}}   \\  = \frac{ - 2  \sqrt{15}  (  4- \sqrt{15} )}{4 -  \sqrt{15}}   \\  =  - 2 \sqrt{15}  \\ thus \:  \:  \:  \: x  -  \frac{1}{x}  =  - 2 \sqrt{15}

Similar questions