Math, asked by vibhanshu8441, 11 months ago

if x is equal to 3 and Y is equal to -1 find the values of each of the following using identity​

Attachments:

Answers

Answered by Anonymous
18

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{ \left[ \dfrac{x}{4} -  \dfrac{y}{3} \right] \left[ \dfrac{ {x}^{2}}{16} +  \dfrac{xy}{12} +  \dfrac{ {y}^{2} }{9} \right] = \dfrac{793}{1728} }}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

\sf{ \left[ \dfrac{x}{4} -  \dfrac{y}{3} \right] \left[ \dfrac{ {x}^{2}}{16} +  \dfrac{xy}{12} +  \dfrac{ {y}^{2} }{9} \right] }

It can be written as :

\sf{= \left[ \dfrac{x}{4} -  \dfrac{y}{3} \right] \left[ {( \dfrac{x}{4})}^{2} +  \dfrac{x}{4} \times  \dfrac{y}{3} +  {( \dfrac{y}{4}) }^{2} \right] }

We know that, a³ - b³ = (a - b)(a² + ab + b²)

Here \sf{a =  \dfrac{x}{4} \: and \: b =  \dfrac{y}{3} }

By substituting the values in the identity we have,

\sf{=  { \left[ \dfrac{x}{4} \right] }^{3} -  { \left[ \dfrac{y}{3} \right] }^{3} }

\sf{= \dfrac{ {x}^{3} }{64} -  \dfrac{ {y}^{3} }{27} }

If x = 3, y = - 1

\sf{= \dfrac{ {3}^{3} }{64} -  \dfrac{ { (- 1)}^{3} }{27} }

\sf{= \dfrac{27}{64} -  (\dfrac{ - 1}{27}) }

\sf{ = \dfrac{27}{64} + \dfrac{1}{27} }

Least Common Multiple of 64 and 27 is 1728

\sf{= \dfrac{27 \times 27}{64 \times 27} + \dfrac{1 \times 64}{27 \times 64} }

\sf{ = \dfrac{729}{1728} + \dfrac{64}{1728} }

\sf{= \dfrac{729 +64}{1728} }

\sf{= \dfrac{793}{1728} }

\boxed{\bf{ \left[ \dfrac{x}{4} -  \dfrac{y}{3} \right] \left[ \dfrac{ {x}^{2}}{16} +  \dfrac{xy}{12} +  \dfrac{ {y}^{2} }{9} \right] = \dfrac{793}{1728} }}


Anonymous: Perfect well elaborated
Anonymous: Keep contributing
Anonymous: :-)
Similar questions