Math, asked by ammu9324, 1 year ago

if x is equal to a cos cube theta and Y is equal to b sin cube theta prove that X by a to the power 2 by 3 + 5 by b to the power 3 is equal to 1

Attachments:

Answers

Answered by joshishivam905
28

by shortcut method

by shortcut method plzz like and rate

by shortcut method plzz like and rateif u like method

Attachments:
Answered by dikshaagarwal4442
0

Answer:

 (\frac{x}{a} )^{\frac{2}{3} } + (\frac{y}{b} )^{\frac{2}{3} } = cos² + sin² = 1 (the proof is given in the explanation)

Step-by-step explanation:

  • Given information: x = a cos³ and y = b sin³
  • We have to prove,  (\frac{x}{a} )^{\frac{2}{3} } + (\frac{y}{b} )^{\frac{2}{3} } = 1
  • First taking the term = (\frac{x}{a} )^{\frac{2}{3} }

                                          = (\frac{acos^{3}\theta}{a} )^{\frac{2}{3} }   [ as x = a cos³ ]

                                          = ({cos\theta} )^{\frac{2}{3} *3 }

                                          = ({cos\theta} )^{2} = cos²

  • Now the 2nd term = (\frac{y}{b} )^{\frac{2}{3} }

                                        = (\frac{bsin^{3}\theta}{b} )^{\frac{2}{3} }   [ as y = b sin³]

                                        = ({sin\theta} )^{\frac{2}{3} *3 }

                                         = ({sin\theta} )^{2} = sin²

  • By adding  (\frac{x}{a} )^{\frac{2}{3} } and  (\frac{y}{b} )^{\frac{2}{3} } we get,  (\frac{x}{a} )^{\frac{2}{3} } + (\frac{y}{b} )^{\frac{2}{3} } = cos² + sin²

                                                                                    = 1 (proved)

 [ Applying trigonometry, for a right angled triangle sin = \frac{height}{hypotenuse}

                                                                           and    cos = \frac{base}{hypotenuse}

 Now, sin² + cos²

    = (\frac{height}{hypotenuse})^{2} + (\frac{base}{hypotenuse})^{2}

 = \frac{hypotenuse^{2}  }{hypotenuse^{2} } [applying Pythagoras theorem, base²+height²=hypotenuse²]

 = 1 ]

Similar questions