Math, asked by prashantdhalwal19, 1 year ago

if x+iy=a+ib/a-ib then prove x sq. +y sq.=1​

Answers

Answered by sandy1816
1

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\red{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Answered by Nereida
0

Answer:

Given that :

\tt{x+iy=\dfrac{a+ib}{a-ib}}

\longrightarrow\tt{\dfrac{a+ib}{a-ib}\times\dfrac{a+ib}{a+ib}}

\longrightarrow\tt{\dfrac{a^{2}+ab i +ab i + b^{2}i^{2}}{a^{2}+ab i - ab i - b^{2}i^{2}}}

\longrightarrow\tt{\dfrac{a^{2}+2ab i - b^{2}}{a^{2}+b^{2}}}

\longrightarrow\tt{\dfrac{a^{2}-b^{2}}{a^{2}+b^{2}}+\dfrac{2ab}{a^{2}+b^{2}}i}

\tt{Now,\:x-iy = \dfrac{a^{2}-b^{2}}{a^{2}+b^{2}}-\dfrac{2ab}{a^{2}+b^{2}}i}

So,

\tt{x^2 + y^2 = (x + iy)(x - iy)}

Hence,

\longrightarrow{\tt{\bigg[\dfrac{a^{2}-b^{2}}{a^{2}+b^{2}}+\dfrac{2ab}{a^{2}+b^{2}}i\bigg]\bigg[\dfrac{a^{2}-b^{2}}{a^{2}+b^{2}}-\dfrac{2ab}{a^{2}+b^{2}}i\bigg]}}

\longrightarrow\tt{\dfrac{{(a^{2}-b^{2})}^{2}}{(a^{2}+b^{2})^{2}}-\dfrac{4a^{2}b^{2}i^{2}}{(a^{2}+b^{2})^{2}}}

\longrightarrow\tt{\dfrac{{(a^{2}-b^{2})}^{2}}{(a^{2}+b^{2})^{2}}+\dfrac{4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}

\longrightarrow\tt{\dfrac{{(a^{2}-b^{2})}^{2}+4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}

\longrightarrow\tt{\dfrac{(a^{2})^{2}+(b^{2})^{2}-2a^{2}b^{2}+4a^{2}b^{2}}{(a^{2}+b^{2})^{2}}}

\longrightarrow\bf{\dfrac{a^{4}+b^{4}+2a^{2}b^{2}}{a^{4}+b^{4}+2a^{2}b^{2}}} = 1

Similar questions