Math, asked by vinayghos059, 1 year ago

If x plus one upon X equal to root 3 find x cube + 1 upon x cube

Answers

Answered by DevyaniKhushi
8

x +  \frac{1}{x}  =  \sqrt{3}  \\  \\  \\ (x +  \frac{1}{x})^{3}  =  ({ \sqrt{3 }})^{3}  =  \sqrt{3}  \times(  { \sqrt{3} })^{2}  \\   \\ 3\sqrt{3}


DevyaniKhushi: hmm
DevyaniKhushi: Yes... I've bf
sajid2580: kk
sajid2580: kon hai
sajid2580: wo
DevyaniKhushi: Hai koi
sajid2580: bato
sajid2580: batao kon hai
DevyaniKhushi: Ayush...
DevyaniKhushi: Patna me hi rhta h
Answered by MarkAsBrainliest
10
\underline{\underline{\bold{SOLUTION:}}}

Given that,

x + \frac{1}{x} = \sqrt{3}

Now, x^{3} + \frac{1}{x^{3}}

=(x+\frac{1}{x})^{3} - (3*x*\frac{1}{x})(x+\frac{1}{x})

= (√3)³ - 3 (√3)

= 3√3 - 3√3

= 0
Similar questions