if x sin cube theta + Y cos cube theta is equal to sin theta into cos theta and x sin theta is equal to Y cos theta show X square + Y square is equal to 1
Answers
Answered by
88
Given
→ x sin³∅ + y cos³∅ = sin∅ cos∅
→ x sin∅ = y cos∅
Solution
→ x sin³∅ + y cos³∅ = sin∅ cos∅
Taking common term out.
→ x sin∅(sin²∅) + y cos∅(cos²∅) = sin∅ cos∅
By replacing x sin∅ by y cos∅,
→ y cos∅(sin²∅) + y cos∅(cos²∅) = sin∅ cos∅
→ y cos∅(sin²∅ + cos²∅) = sin∅ cos∅
Since sin²∅ + cos²∅ = 1
→ y cos∅ = sin∅ cos∅
→ y = sin∅
Now by using this value
→ x sin∅ = y cos∅
→ x × y = y cos∅
→ x = cos∅
Since cos²∅ + sin²∅ = 1 therefore
→ x² + y² = 1
Hence Proved
Answered by
49
Answer:
Given,
x sin³ ¢ + y cos³¢ = sin ¢. cos ¢
x sin ¢ = y cos ¢ --> ( i )
Proving :
sin²¢. x sin ¢ + cos²¢. y cos ¢ = sin ¢. cos ¢
sin²¢. y cos ¢ + cos²¢. y cos ¢ = sin ¢. cos ¢
y cos ¢ ( sin²¢ + cos²¢) = sin ¢. cos ¢
y cos ¢ = sin ¢. cos¢
y = sin ¢ --> ( a )
Now, Putting value of 'y' in (i),
x sin ¢ = sin ¢. cos ¢
x = cos ¢ --> ( b )
Adding and Squaring ( a ) and ( b ),
x² + y² = cos² ¢ + sin² ¢
Hence,
x² + y² = 1
PROVED.
Similar questions