Math, asked by rajd4, 1 year ago

if X square + 1 by x square equal to 7 then find the value of x cube + 1 by x q taking only the positive value of x + 1 by X

Answers

Answered by Anonymous
1

Answer:


Step-by-step explanation:


Attachments:
Answered by Anonymous
6

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

\textbf{\underline{Given}}

\tt{\rightarrow x^2+\dfrac{1}{x^2}=7}

{\boxed{\sf\:{Adding\;2\;to\;both\;sides\;we\;get :-}}}

\tt{\rightarrow x^2+\dfrac{1}{x^2}+2=7+2}

\tt{\rightarrow (x+\dfrac{1}{x})^{2}=9}

\tt{\rightarrow x+\dfrac{1}{x}=\sqrt{9}}

\tt{\rightarrow x+\dfrac{1}{x}=\pm 3}

\textbf{\underline{Here}}

\textbf{\underline{Take\;plus\;value}}

\tt{\rightarrow x+\dfrac{1}{x}=3}

\textbf{\underline{Cubing\;both\;sides\;we\;get:-}}

\tt{\rightarrow (x+\dfrac{1}{x})^{3}=(3)^3}

\tt{\rightarrow x^3+\dfrac{1}{x^3}+3\times x\times\dfrac{1}{x}(x+\dfrac{1}{x})=27}

\tt{\rightarrow x^3+\dfrac{1}{x^3}+3\times 3=27}

\tt{\rightarrow x^3+\dfrac{1}{x^3}+9=27}

\tt{\rightarrow x^3+\dfrac{1}{x^3}=27-9}

\tt{\rightarrow x^3+\dfrac{1}{x^3}=18}

Hence,

{\boxed{\sf\:{x^3+\dfrac{1}{x^3}=18}}}

Similar questions